面向世界科技前沿,面向国家重大需求,面向国民经济主战场,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

力学所在干酪根结构的机器学习研究中取得进展

2021-01-06 力学研究所
【字体:

语音播报

  干酪根是页岩油气的主要母质,其分子模型构建及熟化机理是油气勘探开发的理论基础。中国科学院力学研究所赵亚溥研究团队前期针对珍贵的深部页岩样品,基于大量实验及计算,构建了目前国际最大的干酪根分子群,建立了干酪根的时间-温度-成熟度关系[Global Challenges 3, 1900006 (2019);Fuel 278, 118264 (2020)]。由于干酪根具有分子量大、官能团多样等特点,导致干酪根结构模型重构中存在“组合爆炸”难题,理论存在的干酪根构型数目是一个远大于5n/4的数字(n为碳原子数)。传统构建方法通过大量实验和试错探索合理构型,效率较低,限制了干酪根化学-力学性质的进一步研究。

  近日,赵亚溥团队采用机器学习结合实验数据的方法预测干酪根组分及其结构特征。在课题组前期分子结构研究的基础上,研究人员结合深部页岩干酪根实验数据,构建了超过10万组可靠样本库,为通过机器学习方法智能化构建干酪根模型提供了数据保障。经训练的机器学习模型对干酪根骨架结构预测准确度达到96.1%(图1), 对干酪根类型特征的预测准确度约为90%(图2)。此外,采用机器学习方法预测干酪根成熟度也十分准确。

  研究表明,机器学习方法在干酪根组分预测和特征分析中性能优异,为智能化高通量建立我国干酪根分子样本库及化-力性质分析平台奠定了基础。

  相关研究成果以Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra为题,发表在Fuel上。研究工作得到国家自然科学基金重点项目和中科院前沿科学重点研究计划等的支持。

图1.机器学习方法预测干酪根组分

图2.机器学习方法预测干酪根类型

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号 京公网安备110402500047号

地址:北京市三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • 彩88官网-彩88主页