您的位置:首页>背景资料
探秘碳卫星载荷
发布时间:2016-12-22 来源: 【字号:  

  2016年12月22日3时22分,在酒泉基地,中国首颗全球二氧化碳监测科学实验卫星(简称“碳卫星”)发射成功。这颗卫星上搭载了高光谱与高空间分辨率CO2探测仪、多谱段云与气溶胶探测仪两台载荷,均由中国科学院长春光学精密机械与物理研究所研制。

  一、背景意义(气候变化与全球碳排放监测)

  全球变暖、温室效应、极端天气、雾霾……每一个词都如一把重锤,不时地敲打人类脆弱的文明。从未有任何一个问题,如“气候变化”一样,牵动到世界上每一个人、甚至每一种生命。

  面对严峻的“气候变化”形势,减少二氧化碳等温室气体的排放已成为应对“困局”的必然选择,而提到温室气体的减排,碳排放的量化监测是各国重要的技术基础和保障。

  目前的所有碳排放量监测手段中,只有星载高光谱温室气体探测技术既能够实现对大气中CO2等温室气体浓度的高精度探测,又能够获取全球各区域气体浓度分布数据。

  正因如此,各发达国家纷纷积极研发专用的、高精度温室气体观测卫星。但由于极高的技术难度,目前仅有两颗卫星从太空监视地球温室气体排放:一颗是日本于2009年发射的包括CO2、CH4浓度观测的卫星GOSAT,一颗是美国于2014年发射的、专门用于大气CO2浓度测量卫星OCO-2卫星。

美国OCO-2卫星

  现在,经过近6年的攻关研制,我国首颗CO2观测科学实验卫星TANSAT也于2016年末发射,对人类碳排放一探究竟。

  

阿拉斯加冰川过去30年消融的景象

  气候变化——“更热、更旱、更涝的未来”?

  谈到气候变化,人们不难联想到一个词语——“极端天气”。

  2015年是极端天气多发的一年:五月份,西班牙的巴伦西亚和兰萨罗特温度达到了46.2摄氏度,高出历史纪录6摄氏度;七月份,埃及卢克索的温度高达47.6摄氏度;十月份,南非的弗雷登达尔则达到48.4摄氏度!高温导致的干旱愈演愈烈,阿拉斯加、印度尼西亚出现破纪录的持续野火,印度西南季风的降雨量也低于常值。

  高温不仅带来干旱,增温的大气同时也获得了更多的含水量,一月份,马拉维爆发了有史以来的最大洪水,印度金奈、北爱尔兰、巴基斯坦也均打破了24小时降雨量的记录……

  面对这一系列极端天气现象,甚至于2016年世界气象日的主题也被定为“直面更热、更旱、更涝的未来”!

  气候变化的主要因素是全球变暖,其正在破坏季节的自然格局,过去十年中,极端天气的频率和强度均显著增加。

  现在我们把视角从全球转到中国,从14年到16年,中国南方的频繁暴雨让“看海”的乐观主义迅速被严肃的救灾报道冲淡,触目惊心的城市内涝画面引发了广泛的重视与担忧,以往难以感知的气候变化(全球变暖、冰川融化)以暴雨的形式与雾霾一同站在前台。

  中国气象局前局长郑国光指出:“近60年来,全国地表平均温度升高1.38摄氏度,平均每10年升高0.23摄氏度,几乎是全球平均升幅的两倍”,换言之,全球变暖,中国尤甚。

  在巴黎协定关于将全球平均气温的升温保持在远低于2摄氏度的目标道路上,世界各国正在快马加鞭为这一目标努力。大量的科学论证表明,若超过2摄氏度,地球上的生命将岌岌可危,然而,关于地球升温的科学数据预测则显得触目惊心。

  

全球平均地表温度的模型预测

  谁是“罪魁祸首”

  大气中温室气体被认为是全球变暖的罪魁祸首。

  事实上,地球大气犹如把热腾腾的饭盒用塑料袋扎紧,将太阳送到地球的热量吸收并缓慢释放,即“温室效应”。在过去的几百亿年中,“温室效应”使地球温度适宜升高以孕育生命。

 温室气体的影响

  然而自工业革命以来,人类向大气中排入的温室气体逐年显著增加,大气的温室效应也随之增强,诸如森林砍伐、矿物燃烧等人类活动正迅速打破原有的温度平衡,放大了大气的保温效应。这正是造成全球气温升高、极端天气频现的关键。

  温室气体中CO2的体量相对较大,是最为重要的一种温室气体。科学家们采集了南极Dome C区域的冰芯,通过测量冰芯中水同位素含量和气泡内封存气体的浓度,得出了在过去的80万年间,南极温度与大气中CO2浓度正相关的结论。

在过去的80万年,CO2的大气含量与南极温度正相关(摘自Climate Change Evidence& Causes

  最新的国际政府间气候变化专门委员会(IPCC)第四次评估报告明确指出,由于人类活动影响,大气CO2的浓度已经由工业革命前的280ppm(ppm是英文parts permillion的缩写,常用来表示气体浓度或者溶液浓度)上升到今天的380ppm,CO2浓度的显著增加急剧加快了全球变暖的进程。

 

 在过去的1千年,CO2的大气含量自18世纪工业革命开始显著上升(摘自Climate Change Evidence & Causes

  正是在这样的全球背景下,国家科技部-863计划在十二五期间专门设置了“全球二氧化碳监测科学实验卫星与应用示范”重大项目(简称全球碳监测卫星项目),目标是研制并发射一颗“以高光谱CO2探测仪、多谱段云与气溶胶探测仪为主要载荷的高空间分辨率和高光谱分辨率全球二氧化碳监测科学试验卫星”,建立高光谱卫星地面数据处理与验证系统,形成对全球、中国及其它重点地区大气CO2浓度监测能力,监测精度达到1-4ppm,使我国在高光谱大气CO2浓度观测方面达到国际先进水平。

  项目中提到的这颗高空间分辨率和高光谱分辨率全球二氧化碳监测科学试验卫星,正是我们今天文章开头介绍的即将发射的TANSAT卫星,这颗碳卫星的发射,体现了中国在气候变化问题上的积极担当。

  二、碳卫星如何实现监测全球CO2浓度监测

  碳卫星实现大气温室气体探测是基于大气吸收池原理,CO2、O2等气体在近红外至短波红外波段有较多的气体吸收,形成特征大气吸收光谱,对吸收光谱的强弱进行严格定量测量,综合气压、温度等辅助信息并排除大气悬浮微粒等干扰因素,应用反演算法即可计算出卫星在观测路径上CO2的柱浓度。

  

温室气体大气吸收池原理示意图

  通过对全球柱浓度的序列分析,并借助数据同化系统的一系列模型计算,可推演出全球CO2的通量变化(单位时间通过单位面积的CO2总量),这正是碳循环研究的核心数据基础。

  

碳循环示意图

  要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率CO2探测仪。CO2探测仪采用大面积衍射光栅对吸收光谱进行细分,能够探测2.06μm、1.6μm、0.76μm 三个大气吸收光谱通道,最高分辨率达到0.04nm,如此高的分辨率在国内光谱仪器的研制上尚属首次。

  一个好汉三个帮,碳卫星另一台载荷——多谱段云与气溶胶探测仪可以测量云、大气颗粒物等辅助信息,为精确反演CO2浓度剔除干扰因素。

  

碳卫星载荷系统

  碳卫星最终实现全球观测,还需要卫星平台实现灵活的观测模式。CO2探测仪与卫星平台配合,通过主平面天底和耀斑两种主要观测模式,才能对全球陆地和海面路径上CO2的吸收光谱进行精确测量。为保证在轨获取光谱数据的精度,载荷需要在轨进行对日、对月定标,这也需要卫星平台频繁调整姿态、翩翩起舞。中国碳卫星绝对是地球之上的灵魂舞者。

  

卫星的天底和耀斑观测模式

  当然,仅有卫星是远远不能完成使命的,若要实现最终任务目标,需要多个大系统协调配合。在科技部、中国科学院的共同组织下,碳卫星按照航天工程模式,组成了卫星、运载、发射场、测控、应用五大系统。

  碳卫星发射运行后,科学数据将依托风云系列地面接收站资源完成数据下传。这些数据并不是直接可用的CO2浓度分布,需要经过大气物理学家进行高精度的全球CO2分布反演计算,才能最终成为全球CO2观测数据产品并共享发布。

  

碳卫星数据产品生成与发布路径

  三、载荷突破多项关键技术,实现技术跨越发展

  CO2探测仪采用三通道光栅光谱仪的方案,选用一块Si-CCD探测器和两块MCT制冷探测器接收3个波段的高光谱分辨率光谱辐射信号,由指向反射镜、望远镜、分束器、三个光栅光谱仪和星上定标组成,0.76mm、1.61mm和2.06mm共3个谱段,分别对大气中的O2和CO2痕量气体进行观测,提供大气温室气体的精细光谱测量结果。

  CO2探测仪核心的技术指标和难点就是要同时实现高光谱分辨率和高辐射分辨率,这就如同检查人的指纹,普通仪器只看得到纹理,而CO2探测仪可以把指纹放大一百倍,精细的测量每条指纹的宽度和深度。

  为实现核心指标,CO2探测仪突破了一系列核心关键技术。

  CO2探测仪通过一块指向反射镜对外部光线进行收集,这块指向镜在设计时被巧妙的设计“一镜双用”:一面镜面,用于在观测时折射光线;一面漫反射面,在定标时对准太阳,名称漫反射光来定标仪器精度。巧妙设计的背后是加工制造难度的极大增加,一方面要保证镜面和漫反射面时的高精度,另一方面要实现高度轻量化和高可靠性,研究人员经过反复工艺摸索和大量的空间可靠性试验才最终完成突破这项关键技术。

  

科研人员在对指向镜进行精度测试

  CO2探测仪使用核心分光元件是大面积全息光栅,这种光栅需要极高的衍射效率和面型精度要求,同时要能够适应苛刻的太空环境要求。为突破这项关键技术,科研人员从最基础的、制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难点,最终在SiC基底上制造出高精度衍射光栅,并在航空较飞试验中进行了验证。

  

大面积全息衍射光栅

  与其他很多星载光学载荷不同,CO2探测仪在轨工作时要保持在-5℃温度水平,这是为了提高两个红外通道的信噪比、保证光谱探测精度。这一简单的条件变化,需要科研人员所有的组件、整机装调工作都要在-5℃条件下进行。在载荷初样、正样研制最紧张的阶段,研究人员持续数月连续在低温室里工作,经常户外是30℃以上的高温,低温室内穿着厚厚羽绒服、冻着手坚持装调。

  

工作人员在低温实验室进行仪器调试

  定标技术是光谱仪器的最终实现精度的关键技术,为保证最终的光谱数据的精准,必须在实验室和在轨工作时对仪器的光谱性能和辐射性能进行精准标定。

  CO2探测仪和云与气溶胶探测仪采用了国际最先进的定标技术。为保证实验室定标数据有效性,CO2探测仪必须在真空罐内模拟在轨实际工作状态进行定标,而这一真空定标系统是为CO2探测仪量身特制的。科研人员还利用可调谐激光器和波长及搭建自动化定标系统,大幅提高了实验室定标的效率,使仪器的定标周期较OCO2大幅缩短。

  

实验室定标现场

  在轨定标技术方面,两台仪器均采用多种定标模式交叉比对定标,而且能够实现在轨对日定标,云与气溶胶探测仪还能够进行在轨对月定标,这相当在太空工作状态下,仪器也能有一个稳定的决定定标基准,这对于保证仪器最终的数据精度极为关键。

  “配角”也不简单

  多谱段云与气溶胶探测仪虽然不是“主角”,但千万别小看他,他可能给我带来很多意想不到的收获。

  在碳卫星立项论证时,云与气溶胶气溶胶探测仪只规划了0.38mm、0.67mm、0.87mm、1.64mm四个光谱通道;但随着地面应用系统的不断论证,希望仪器能够增加1.375mm探测通道,并在0.67μm和1.64μm波段实现0°、60°、120°三个方向的偏振测量功能。

  为了获取更加丰富的科学数据,载荷研制单位克服困能,重新对仪器进行了设计,按照应用系统的需求增加了相应的探测通道。

  增加探测通道后,利用偏振信号对气溶胶敏感而对地表不敏感的特点,可以提取气溶胶光学厚度,然后利用提取的气溶胶信息和标量信号对地表敏感的特点,经过大气订正,得到地表反射率,从而实现对气溶胶和地表反射率的同时反演。

  这样不仅可以获取的全球尺度气溶胶数据,还可以帮助气象学家提高天气预报的准确性,并为研究PM2.5等大气污染成因提供重要数据支撑。
(责任编辑:麻晓东)
关闭页面
© 1996 - 2016 中国科学院 版权所有 备案序号:京ICP备05002857号 联系我们 地址:北京市三里河路52号 邮编:100864
彩88官网-彩88主页